
Report on answers:

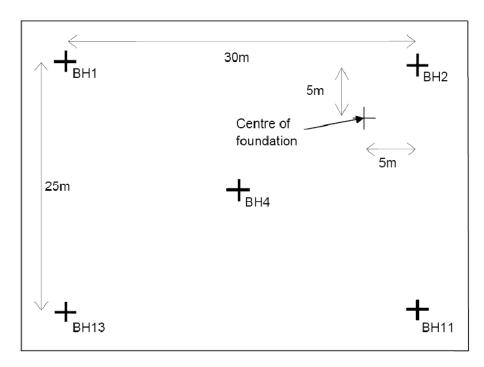
Example 2.2
Pad foundation
with inclined eccentric load
on boulder clay

Prof. Dr.-Ing. Norbert Vogt Technische Universität München, Germany

Example 2.2 Pad foundation with inclined eccentric load on boulder clay

Permanent: Vertical $G_{v,k} = 1000 \text{ kN}$, excluding weight of foundation

Horizontal $G_{h,k} = 0$


Variable: Vertical $Q_{vk} = 750 \text{ kN}$

Horizontal $Q_{h,k} = 500 \text{ kN}$, at 2m above the top of the foundation

Concrete weight density $\gamma_c = 25 \text{ kN/m}^3$

The soil consists of boulder clay. A site plan showing the location of the foundation and the locations where five SPT tests were carried out is given in Figure 2.2b. N values obtained from SPT tests are plotted in Figure 2.2c, the water contents and index tests determined from samples are presented in Figure 2.2d.

The soil has a bulk weight density of 21.4 kN/m3 and the ground water level is 1.0 m below the ground level. The width of the foundation when designed to Eurocode 7 is to be determined, assuming the foundation is for a conventional concrete framed structure. There is no need to consider any effects due to frost or vegetation. The foundations' design working life is 50 years.

borehole log 1

Description	Scale			S:	amples & S.P.T.	
Description	Depth	Legend	Ref. No.	Туре	Depth	N
TOP SOIL	0.30					
Very stiff brown sandy gravelly CLAY with cobbles			9998	บ -	1.00	
(Boulder Clay)		0	9905	ם	1.50 2.00 (1.80)	27
	-	0.	9352	D	2.50	
	2.90		9997	D	3.00 (3.30)	40
		0				
Very stiff black silty sandy gravelly CLAY with cobbles and boulders (Boulder Clay)		10.01 f Q	9920	D	(4.80) 5.00	38
		5 2	9923	D	6.00 (6.30)	45
	8.00	\$ \$ \$	9921 9924	D D	7.50 (7.80) 8.00	47
		Ш				

2.2e: Borehole Log 1

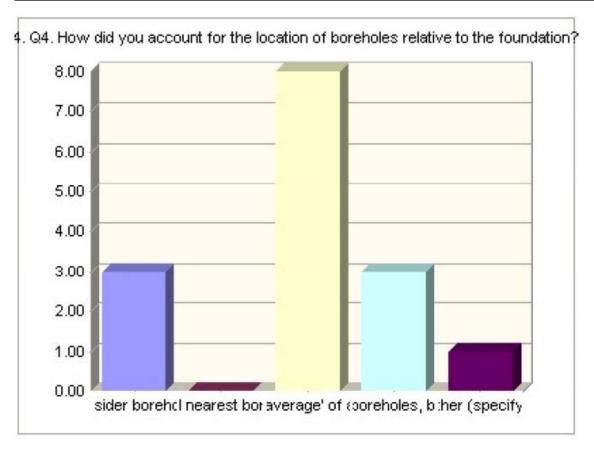
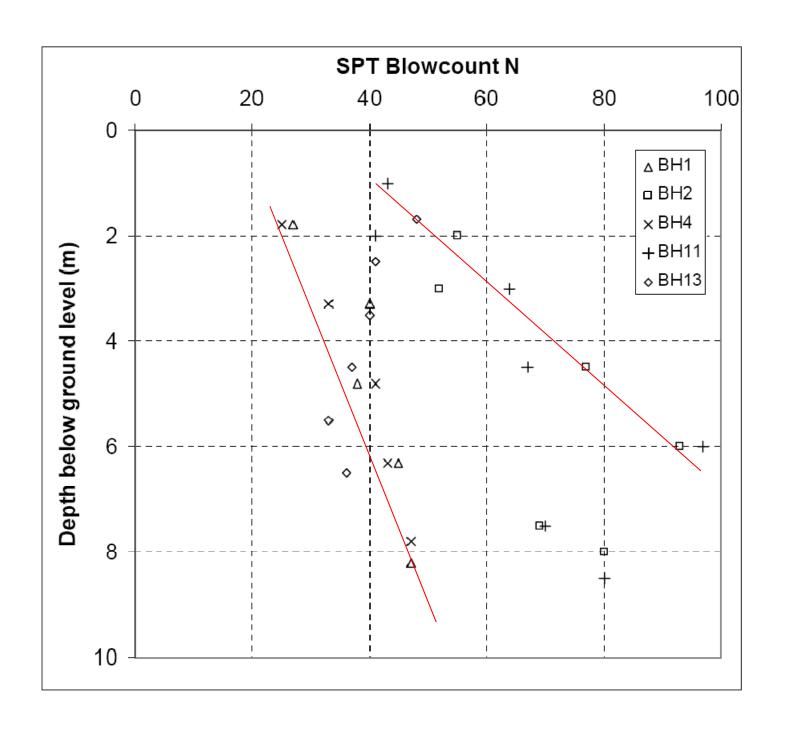

Water Levels Recorded During Boring Water Strikes 6.30 8.50 8.50 1.2.80 Hole Depth 6.30 7.30 Casing Depth 2. Nil | Nil 3.50 3. Water Level Total - 3 hrs. chiselling PVC pipe installed. Samples & S.P.T. Scale Description Depth Ref. No. Type Depth Legend TOPSOIL 0.30 1009∉ U 0.50 Stiff brown silty very stony 10097 D 0.50 CLAY, some cobbles 1.00 (1.00) 43 10098 D 1.50 Stiff brown sandy gravelly 1.50 (Abortive) CLAY with cobbles (Boulder (2.00)Clay) <u>0</u> 3.00 10099 В 3.00 (3.00) 64 Very stiff black sandy silty gravelly CLAY, cobbles and some boulders (Boulder Clay) 10100 D 4.50 (4.50) 67 (6.00) 97 10101 D 6.50 (7.50) 70 10102 D 7.80 Borehole completed at (8,50) 80 9.00 Code: U-Undisturbed Sample D-Large Disturbed Sample J---Jar Sample W-Water Sample

Figure 2.2h: Borehole Log 11

borehole

log 11


4. Q4. How did you account for the location of boreholes relative to the foundation?

Response	Count	Percent
Did not consider borehole location	3	20.00%
Considered nearest borehole only	0	0.00%
Considered 'average' of all boreholes	8	53.33%
Considered trend of all boreholes, biased towards nearest	3	20.00%
Other (specify)	1	6.67%

5. Q5. Please explain the reasons for your answer to Q4

Two different trends can be recognized in the boreholes logs; I do not see any particular reason to select one ore the other; considering the dimensions of the problem, the location of the foundation can be only causually closest to the more favourable soil stratigraphy There was a distinct trend, so I increased characteristic value by being biassed by nearest. Value still well below nearest, but higher than the lower ones. The distance of tests location from the centre of foundation is small and doesn't vary between the different tests BH2 shows a firm layer of clay with a relatively low SPT N value at foundation level. As this BH is close to the footing, a lower value of cu was assumed in this location. There are only 5 boreholes and their trend is similar. Picked conservative estimate of conditions on site. Category2, a homogenous ground, the uniform parameters for checking are assumed, for all pad?s foundation Ye taken into account all boreholes but using weights depending on distance between the borehole and the centre of foundation. I choose the unfavorable soil conditions, because they don't vary that much. The distance of the boreholes has been considered negligible for the final result. Borehole nearest to foundation shows higher SPT values but average values are more conservative No procedure known to determine the soil parameters (drained, undrained shear strength and angle of shearing resistance) from the given borehole test results Experience of this type of soil is that it can vary in an apparantly random manner across a site	Response ID	Response
Value still well below nearest, but higher than the lower ones. The distance of tests location from the centre of foundation is small and doesn't vary between the different tests BH2 shows a firm layer of clay with a relatively low SPT N value at foundation level. As this BH is close to the footing, a lower value of cu was assumed in this location. There are only 5 boreholes and their trend is similar. Picked conservative estimate of conditions on site. Category2, a homogenous ground, the uniform parameters for checking are assumed, for all pad?s foundation i?ve taken into account all boreholes but using weights depending on distance between the borehole and the centre of foundation. I choose the unfavorable soil conditions, because they don't vary that much. The distance of the boreholes has been considered negligible for the final result. Borehole nearest to foundation shows higher SPT values but average values are more conservative No procedure known to determine the soil parameters (drained, undrained shear strength and angle of shearing resistance) from the given borehole test results	3	to select one ore the other; considering the dimensions of the problem, the location of the
the different tests BH2 shows a firm layer of clay with a relatively low SPT N value at foundation level. As this BH is close to the footing, a lower value of cu was assumed in this location. There are only 5 boreholes and their trend is similar. Picked conservative estimate of conditions on site. Category2, a homogenous ground, the uniform parameters for checking are assumed, for all pad?s foundation I?ve taken into account all boreholes but using weights depending on distance between the borehole and the centre of foundation. I choose the unfavorable soil conditions, because they don't vary that much. The distance of the boreholes has been considered negligible for the final result. Borehole nearest to foundation shows higher SPT values but average values are more conservative No procedure known to determine the soil parameters (drained, undrained shear strength and angle of shearing resistance) from the given borehole test results	6	Value still well below nearest, but higher than the lower ones.
is close to the footing, a lower value of cu was assumed in this location. There are only 5 boreholes and their trend is similar. Picked conservative estimate of conditions on site. Category2, a homogenous ground, the uniform parameters for checking are assumed, for all pad?s foundation ?ve taken into account all boreholes but using weights depending on distance between the borehole and the centre of foundation. I choose the unfavorable soil conditions, because they don't vary that much. The distance of the boreholes has been considered negligible for the final result. Borehole nearest to foundation shows higher SPT values but average values are more conservative No procedure known to determine the soil parameters (drained, undrained shear strength and angle of shearing resistance) from the given borehole test results	57	
Picked conservative estimate of conditions on site. Category2, a homogenous ground, the uniform parameters for checking are assumed, for all pad?s foundation I?ve taken into account all boreholes but using weights depending on distance between the borehole and the centre of foundation. I choose the unfavorable soil conditions, because they don't vary that much. The distance of the boreholes has been considered negligible for the final result. Borehole nearest to foundation shows higher SPT values but average values are more conservative No procedure known to determine the soil parameters (drained, undrained shear strength and angle of shearing resistance) from the given borehole test results	60	BH2 shows a firm layer of clay with a relatively low SPT N value at foundation level. As this BH is close to the footing, a lower value of cu was assumed in this location.
Category2, a homogenous ground, the uniform parameters for checking are assumed, for all pad?s foundation I?ve taken into account all boreholes but using weights depending on distance between the borehole and the centre of foundation. I choose the unfavorable soil conditions, because they don't vary that much. The distance of the boreholes has been considered negligible for the final result. Borehole nearest to foundation shows higher SPT values but average values are more conservative No procedure known to determine the soil parameters (drained, undrained shear strength and angle of shearing resistance) from the given borehole test results	44	There are only 5 boreholes and their trend is similar.
pad?s foundation I?ve taken into account all boreholes but using weights depending on distance between the borehole and the centre of foundation. I choose the unfavorable soil conditions, because they don't vary that much. The distance of the boreholes has been considered negligible for the final result. Borehole nearest to foundation shows higher SPT values but average values are more conservative No procedure known to determine the soil parameters (drained, undrained shear strength and angle of shearing resistance) from the given borehole test results	65	Picked conservative estimate of conditions on site.
borehole and the centre of foundation. I choose the unfavorable soil conditions, because they don't vary that much. The distance of the boreholes has been considered negligible for the final result. Borehole nearest to foundation shows higher SPT values but average values are more conservative No procedure known to determine the soil parameters (drained, undrained shear strength and angle of shearing resistance) from the given borehole test results	22	Category2, a homogenous ground, the uniform parameters for checking are assumed, for all pad?s foundation
The distance of the boreholes has been considered negligible for the final result. Borehole nearest to foundation shows higher SPT values but average values are more conservative No procedure known to determine the soil parameters (drained, undrained shear strength and angle of shearing resistance) from the given borehole test results	85	In the into account all boreholes but using weights depending on distance between the borehole and the centre of foundation.
Borehole nearest to foundation shows higher SPT values but average values are more conservative No procedure known to determine the soil parameters (drained, undrained shear strength and angle of shearing resistance) from the given borehole test results	36	I choose the unfavorable soil conditions, because they don't vary that much.
conservative No procedure known to determine the soil parameters (drained, undrained shear strength and angle of shearing resistance) from the given borehole test results	97	The distance of the boreholes has been considered negligible for the final result.
angle of shearing resistance) from the given borehole test results	104	
	1 1 8	No procedure known to determine the soil parameters (drained, undrained shear strength and angle of shearing resistance) from the given borehole test results
	1 1 0	Experience of this type of soil is that it can vary in an apparantly random manner across a site

12. Q11. What is the characteristic value of N at these depths?

Response ID	At 1 m, $N_k =$	At 2 m, N_k =	At 4 m, N	$N_k =$
3	38	40	48	
б	30	35	45	
60	30	33.3	40	
44	41	41	41	
65	30	25	35	
52	-	39	47	
22	35	35	35	Phase 2 with
85	32	31	45	benchmark values:
36	25	25	33	
104	40	40	40	$N_k = 30 / 35 / 40$
110	6	6	6	

Description: cu = 6N

Author: Stroud and Butler 1978

Title: The standard penetration test and the engineering

properties

Description: cu=5N

Author: Stroud

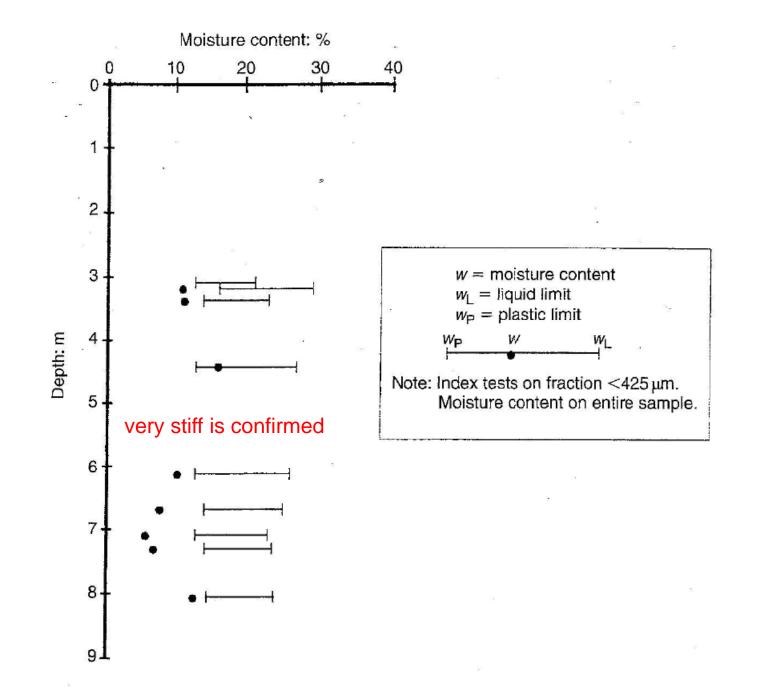
Title: The standard penetration test in insensitive clays and soft

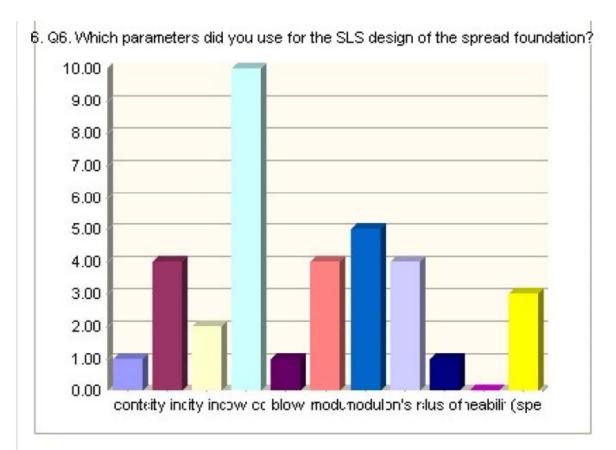
Description: SPT to cu (function of PI)

Author: Stroud (1975)

Title: The SPT in insensitive clays and Rocks, Conf. proc.

Pages: 367-375

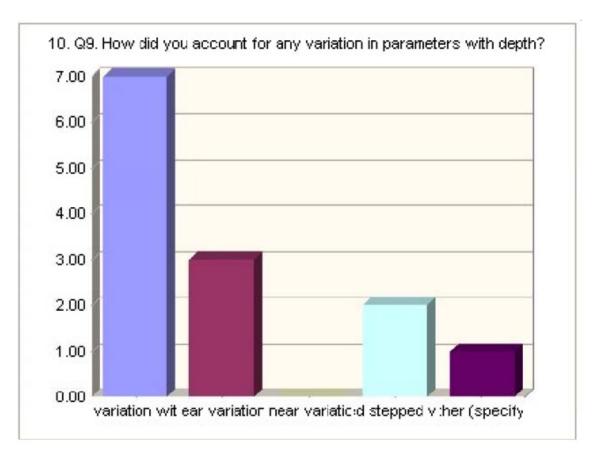

Description: cu=4*N Author: Stroud, M.A. (1989) Title: ?The Standard Penetration Test? Its application and interpretation?.


Eu=400Cu. G=Eu/3.

E'=120cu

Eu = 800cu, E' = 1800N

Stroud 1989

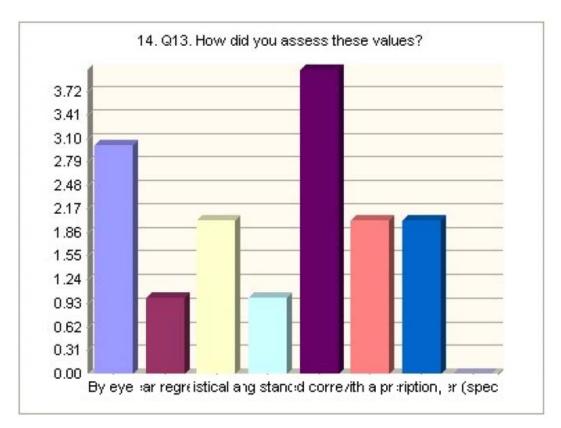

Response	Count	Percent
Water content w	1	6.67%
Plasticity index I _P	4	26.67%
Liquidity index I_L	2	13.33%
SPT blow count N	10	66.67%
Corrected SPT blow count $(N_1)_{60}$	1	6.67%
Undrained Young's modulus of elasticity E _u	4	26.67%
Drained Young's modulus of elasticity E'	5	33.33%
Poisson's ratio n	4	26.67%
Shear modulus of elasticity G	1	6.67%
Permeability k	0	0.00%
Other (specify)	3	20.00%

7. Q7. What correlations did you use to derive soil parameter values (if used) for the SLS verification? If more than one, please list others below.

Response ID	Description	Author	Title	Pages
3	Technical Journal. Geotechnique, 2007,, 57,7	Long M. & Menkiti C.O.	Geotechnical properties of Dublin Boulder Clay	596-611
6	cu=5N	Stroud	The standard penetration test in insensitive clays and soft	Fig 3
57 60	E'=120cu N/A Relationship between			
65	plasticity index + mass shear strength	Tomlinson	Fig 1.5	11
22	N o IL and $IL o Eoed$	PN-B-04452:2002 and PN-81/B-03020		
85	mv=1/f2·N [m2/MN]	Stroud M. A.	The standard penetration test in insensitive clays	367-375
36	DIN 4094-2	DIN	Baugrund - Felduntersuchungen, Teil 2: Bohrlochrammsondierun	16
104		Stroud	The Standard Penetration Test and the engineering propert	
110	Eu = 800cu, E' = 1800N	Stroud 1989	The standard penetration test - its application and interpre	

8. Q7a. Any other correlations (please give same info as above)

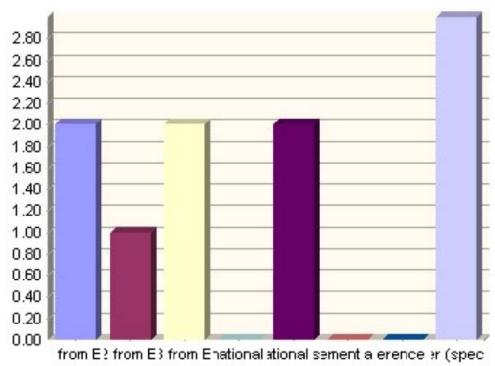
Response ID	Response
60	N/A
22	no
85	Description: Eu/N60=1,0?1,2 (MPa) Author: Butler F.G. Title: Heavily overconsolidated clays. General report and state-of-the-art review for session. Proc. 3rd Conf. on Settlement of Structures. Pentech Press, London 1975



Response	Count	Percent
Ignored variation with depth	7	46.67%
Assumed linear variation with depth	3	20.00%
Assumed bi-linear variation with depth	0	0.00%
Assumed stepped variation	2	13.33%
Other (specify)	1	6.67%

Response ID	Other (specify)
3	select avarage representative values
6	Used values at shallow depth (eg 1m).

13. Q12. What is the characteristic value of Eu for a linear elastic calculation at these depths?


Response ID 6 57 60 44 52 22 85 36 104	At 1 m, E _{u,k} (MPa) = 60 48 N/a 22.5 - 29 25 50	At 2 m, E _{u,k} (MPa) = 70 48 N/A 22.5 - 28 25 50	At 4 m, E _{u,k} (MPa) = 90 48 N/A 22.5 41 25 50 Phase 2 with
	50 168	50 168	

Response	Count	Percent
By eye	3	20.00%
By linear regression	1	6.67%
By statistical analysis	2	13.33%
From an existing standard (specify)	1	6.67%
From a published correlation (specify)	4	26.67%
Comparison with a previous design	2	13.33%
From the soil description, not using the data	2	13.33%
Other (specify)	0	0.00%

Response	From an existing standard	From a published correlation
ID	(specify)	(specify)
3		Cu = 6 Nspt
36	DIN 4094	
110		Stroud and Butler

Q14. Which calculation model did you use to determine settlement?

Response	Count	Percent
Annex F.1 from EN 1997-1	2	13.33%
Annex F.2 from EN 1997-1	1	6.67%
Annex F.3 from EN 1997-2	2	13.33%
Alternative from national annex (specify)	0	0.00%
Alternative from national standard (specify)	2	13.33%
Finite element analysis	0	0.00%
Finite difference analysis	0	0.00%
Other (specify)	3	20.00%

Other (specify)

Classical solutions of linear elasticity theory Lambe&Whitman Table15.1. Tilt more critical than settlement. ULS verified SLS. Clause 6.6.2(16) Burland and Burridge

ş

Annex F

(informative)

Sample methods for settlement evaluation

F.1 Stress-strain method

- (1) The total settlement of a foundation on cohesive or non-cohesive soil may be evaluated using the stress-strain calculation method as follows:
- computing the stress distribution in the ground due to the loading from the foundation; this
 may be derived on the basis of elasticity theory, generally assuming homogeneous
 isotropic soil and a linear distribution of bearing pressure;
- computing the strain in the ground from the stresses using stiffness moduli values or other stress-strain relationships determined from laboratory tests (preferably calibrated against field tests), or field tests;
- integrating the vertical strains to find the settlements; to use the stress-strain method a sufficient number of points within the ground beneath the foundation should be selected and the stresses and strains computed at these points.

F.3 Settlements without drainage

(1) The short-term components of settlement of a foundation, which occur without drainage, may be evaluated using either the stress-strain method or the adjusted elasticity method. The values adopted for the stiffness parameters (such as $E_{\rm m}$ and Poisson's ratio) should in this case represent the undrained behaviour.

→ F.2 Adjusted elasticity method

(1) The total settlement of a foundation on cohesive or non-cohesive soil may be evaluated using elasticity theory and an equation of the form:

$$s = p \times b \times f / E_{\rm m} \tag{F.1}$$

where:

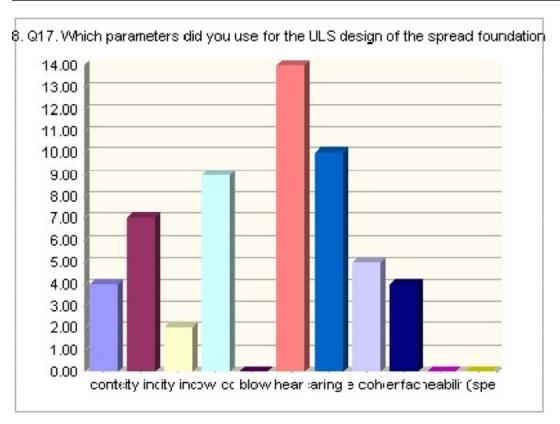
E_m is the design value of the modulus of elasticity

f is the settlement coefficient

p is the bearing pressure, linearly distributed on the base of the foundation

and the other symbols defined in 1.6

- (2) The value of the settlement coefficient *f* depends on the shape and dimensions of the foundation area, the variation of stiffness with depth, the thickness of the compressible formation, Poisson's ratio, the distribution of the bearing pressure and the point for which the settlement is calculated.
- (3) If no useful settlement results, measured on neighbouring similar structures in similar conditions are available, the design drained modulus $E_{\rm m}$ of the deforming stratum for drained conditions may be estimated from the results of laboratory or in-situ tests.
- (4) The adjusted elasticity method should only be used if the stresses in the ground are such that no significant yielding occurs and if the stress-strain behaviour of the ground may be considered to be linear. Great caution is required when using the adjusted elasticity method in the case of non-homogeneous ground.


16. Q15. What limiting values of settlement and tilt is appropriate for this foundation?

```
Settlement C_d (in mm) =
                                                       Tilt C_d (1 in x) =
Response ID
3
               10-15
6
               25
57
               25
                                           1 in 250
                                           The EN 1997-1 does not provide any limit
44
               50
65
               25
52
               25
                                           500
               25
                                           a case: e < 0,3B was not checked
22
               not calculated
47
                                           not calculated
                                           1/150
85
               50
36
               20
                                           300
               25
104
                                          2000
               25
110
```

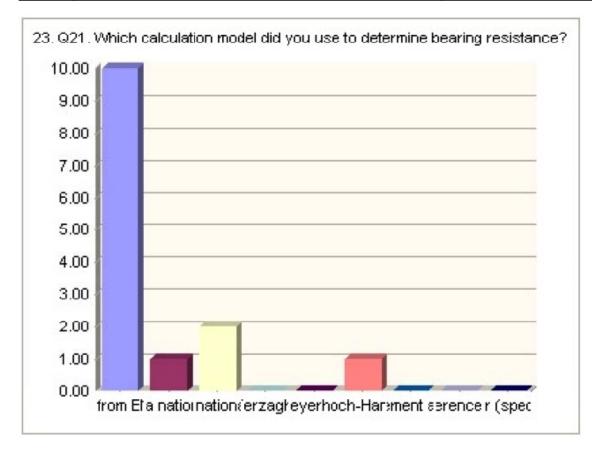
17. Q16. What width does the foundation need to avoid a serviceability limit state?

```
B_{SLS} (in m) =
Response ID
               3.5
                       Phase 2 4,0 m → 3,2 m
6
              (4.5)
57
               4.00 (see 27)
44
65
               4.3
              1,2
                         (tilt was not considered because H is only short time loading)
52
22
47
              not calculated
36
                       Phase 2 4,1 m → 3,0 m
               4,10
97
              see Q27 Phase 2 → 2.8 m
               3.0
104
               3.6
110
```

18. Q17. Which parameters did you use for the ULS design of the spread foundation?

Response	Count	Percent
Water content w	4	26.67%
Plasticity index I _P	7	46.67%
Liquidity index I _L	2	13.33%
SPT blow count N	9	60.00%
Corrected SPT blow count $(N_1)_{60}$	0	0.00%
Undrained shear strength c _u	14	93.33%
Angle of shearing resistance f	10	66.67%
Effective cohesion c'	5	33.33%
Angle of interface friction d	4	26.67%
Permeability k	0	0.00%
Other (specify)	0	0.00%

19. Q18. What correlations did you use to derive soil parameter values (if used) for the ULS verification? If more than one, please list others below.


Response ID	Description	Author	Title	Pages
3	friction as a function of dilatancy index Id	Bolton M.D. (1986)	The strength and dilatancy of sands. Geot. 36(1)	65
6	Cu=5N	Stroud	The standard penetration test in insensitive clays and soft	Fig 3
60	SPT to cu (function of PI)	Stroud (1975)	The SPT in insensitive clays and Rocks, Conf. proc.	367-375
44	See question 18a			
52	soil characteristics of clay	Arbeitsausschuss Ufereinfassungen	EAU 1990	10-11
22	$N \rightarrow IL$ and $IL \rightarrow fi?$, c?, cu	PN-B-04452:2002 and PN-81/B-03020		
47	experienced data of value of soil parameters	Arbeitsausschuss \"Ufereinfassungen\" der HTG und DGGT	EAU 2004	12 pp
85	cu = 4,75Nfield	O. Sivrikaya, E. Togrol	Determination of undrained strength of fine-grained soils	52-69
97		Terzaghi - Peck	J	
104	Relations between cu, PI and SPT	Stroud	The standard penetration test in intensive clays and soft	
118		K. Simmer	Grundbau 2, 1987	291
110	cu = 6N	Stroud and Butler 1978	The standard penetration test and the engineering properties	

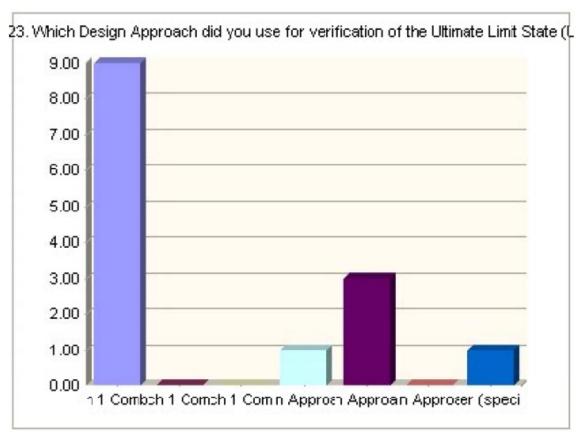
22. Q20. What is the characteristic value of cu at these depths?

Response ID	At 1 m, c _{u,k} (kPa) =	At 2 m, c _{u,k} (kPa) =	At 4 m, c _{u,k} (kPa) =
3	220	240	280
6	150	175	225
57 60 44 65 52 22 47 85	120 150 164 130 200 150 150 152	120 165 164 110 200 150 150 147 200	120 250 164 150 200 150 150
104	200	200	200
118	200	200	200
110	210	210	210

Phase 2 with benchmark values: c_u = 190 / 210 / 240 kPa

23. Q21. Which calculation model did you use to determine

Alternative given in a national standard (specify)


4019:2006-03 DIN 4017 DIN 4017

Response	Count	Percent
Annex D from EN 1997-1	10	66.67%
Alternative given in a national annex (specify)	1	6.67%
Alternative given in a national standard (specify)	2	13.33%
Terzaghi	0	0.00%
Meyerhof	0	0.00%
Brinch-Hansen	1	6.67%
Finite element analysis	0	0.00%
Finite difference analysis	0	0.00%
Other (specify)	0	0.00%

24. Q22. Which country's National Annex did you use to interpret EN 1997-1?

Response ID	Response
3	none
6	UK
57	Italy D.M. 14/01/2008 \"Approvazione delle nuove norme tecniche per le costruzioni\"
60	UK
44	Portugal
65	U.K
22	none
47	germany, NA 005-05-01 AA N349
36	E DIN 1054-101: 2009-02
97	Italian
118	E DIN 1054?101:2009?02 ==> DIN 4017
110	Ireland

25. Q23. Which Design Approach did you use for ve-(ULS)?

Response	Count	Percent
Design Approach 1 Combinations 1 and 2	9	60.00%
Design Approach 1 Combination 1 only	0	0.00%
Design Approach 1 Combination 2 only	0	0.00%
Design Approach 2	1	6.67%
Design Approach 2*	3	20.00%
Design Approach 3	0	0.00%
Other (specify)	1	6.67%

Response ID Other (specify) 52 neglected Qhk

26. Q24. What values of partial factors did you use for this ULS verification?

Response ID	gG	gQ	gf	gc	gcu	gRv	gRh	gRd
3	1	0	1		1			
6	1	1.5 / 0	1	1	1	1	1	1
57	1.0?1.3	0.0?1.5			1.0	1.0	1.0	1.0
60	1	1.3	N/A	N/A	1.4	1	1	1
44	1.35	1.50	1.00	1.00	1.00	1.00	1.00	1.00
65	1.35	1.5	1	1	1	1		
5 2	1,35	1,5				1,4	1,1	
22	1,35	1,50	1,00	1,00	1,00	1,40	1,10	-
47	1,35	1,5	1	1	1		1,1	1,4
85	1,35	1,5			1			1,4
36	1,35	1,5				1,40	1,10	
97	1.3	1.5	1	1	1	1	1	1
104	1.3	1.5	1	1	1	1	1	
118	1,35	1,5				1,4	1,1	1,4
110	1.0	1.0	1.25		1.4			

27. Q24a. If you used a second combination of partial factors, what values did you use for this second combination?

Response ID	gG	gQ	gf	gc	gcu	gRv	gRh	gRd
3	1	0	1.25		1.4			
6	1	1.3 / 0	1.25	1.4	1.4	1	1	1
57	1.0	0.0?1.3			1.4	1.8	1.1	1.0
60	1.35	1.5	N/A	N/A	1	1	1	1
44	1.00	1.30	1.25	1.25	1.40	1.00	1.00	1.00
65	1	1.3	1.25	1.25	1.4			
22	1,00	1,50	1,00	1,00	1,00	1,40	1,10	-
47	1,35	0	1	1	1		1,1	1,4
97	1	1.3	1.25		1.4	1.4	1.8	1.8
104	1	1.3	1.25	1.25	1.4	1.8	1.1	
110	1.35	1.5	1.0		1.0			

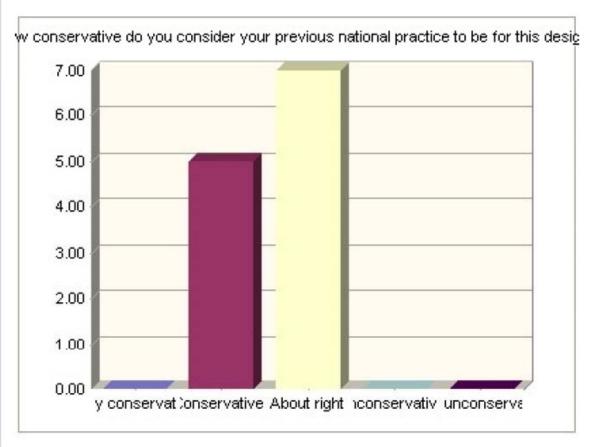
28. Q25. What width does the foundation need to avoid an ultimate limit state?

```
B_{ULS} (in m) =
Response ID
              4.5
3
                     Phase 2 4,66 m → 4,22 m
              4.66
6
57
              4.5
              4.5
60
44
              4.40
65
              4.3
              3,3
3,2 or 4,8
3,5
3,1
52
22
47
85
                         Phase 2 4,5 m → 3,5 m
              4,50
36
              4.40 x 4.40 Phase 2 no change
97
104
              3.5
              4,63 Phase 2 no change 4.23
118
110
```

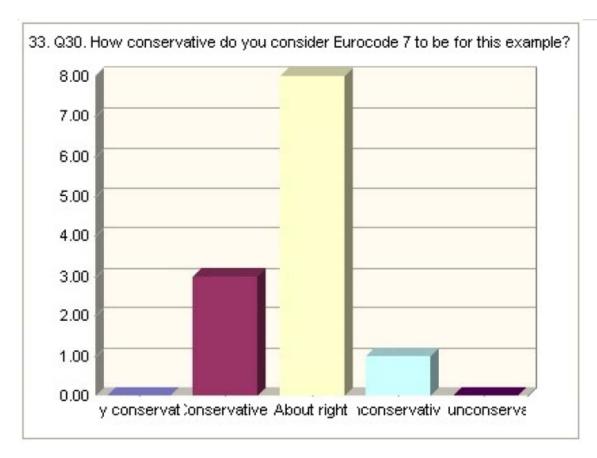
29. Q26. What are the structural forces (at its centreline) that the foundation must be designed for according to Eurocode 2?

Response ID	Design bending moment, MEd (in kNm) =	Design shear force, VEd (in kN) =
6	1980	1992
57	2100	750
44	614 kNm/m	503 kN/m
65	N/A	N/A
52	1400	1644
22	1858 for Buls =4,8	2753 for Buls=4,8
47	not calculated	not calculated
85	1500	2735
36	2753	2223
97	see Q32	see Q32
104	1500	2425
118	2100	3053,8
110	2694	2538

differences supposed to depend on the weight of the footings

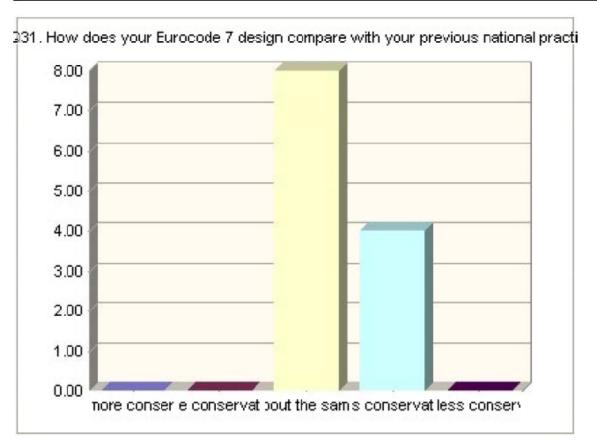

30. Q27. What other assumptions did you need to make to complete your design?

Response ID	Response
6	Q27: The column width is not specified, so I gave results at the CL. Calculated as though water table at underside of footing. Checked for both drained and undrained states with full range of variable loading.
60	The e
44	For the decision on the final value of BSLS, it was also considered the limiting values on Tomlinson?s book for foundations on boulder clays for a long term settlement less than 50 mm. The structural forces were determined with B=4.4 m and assuming a column with 0.5*0.5 m2 (flexible footing)
22	Independence of variable action are assumed.
36	soil parameters
97	As the kind of the structure above the foundation is not known, the limit of the settlement cannot be found. This the reason why such calculation has been neglected.
110	None
44	The SPT is not a good test for clays. So, and attending to the lack of experience on this soils in Portugal, would be good to have information from Borehole Pressure meter and triaxial tests in large samples.
22	There is no specify about Qh i Qv and their?s conjunction.
47	geotechnical interpretative report with detailed informations about soil parameters
97	Water level at ground level.
118	drained, undrained shear strength and angle of shearing resistance or a standard procedure to determine these parameters from the given borehole test results


31. Q28. Please specify any other data that you would have liked to have had to design this type of foundation

Response ID	Response
3	 more soil data: for example why the soil grading is not given? this can be very useful to assess geotechncial parameters from SPT data - undisturbed samples are indicated in the bore logs, but no data from testing are given - column dimensions are needed for structural design of the foundation
6	Q7. Also Eu=400Cu. G=Eu/3.
57	Tilt and settlement limiting values (Q15) could be modified on the basis of the building type
60	Supplementary GI data. Perhaps field vane tests on U100 samples, or CPT data.

32. Q29. How conservative do you consider your previous national practice to be for this design example?



Response	Count	Percent
Very conservative	0	0.00%
Conservative	5	33.33%
About right	7	46.67%
Unconservative	0	0.00%
Very unconservative	0	0.00%

Response	Count	Percent
Very conservative	0	0.00%
Conservative	3	20.00%
About right	8	53.33%
Unconservative	1	6.67%
Very unconservative	0	0.00%

34. Q31. How does your Eurocode 7 design compare with your previous national practice?

Response	Count	Percent
Much more conservative	0	0.00%
More conservative	0	0.00%
About the same	8	53.33%
Less conservative	4	26.67%
Much less conservative	0	0.00%

Phase 2: verifications with benchmark characteristic values

Please assume the following benchmark characteristic values apply:

Characteristic SPT blow count $N_k = 30$ at 1m depth; 35 at 2m; 40 at 4m

Characteristic undrained strength* c_{u k} = 190 kPa at 1m; 210 kPa at 2m; 240 kPa at 4m

Characteristic undrained Young's modulus* E_{u,k} = 150 MPa at 1m; 170 MPa at 2m; 190 MPa at 4m

(*OR, if a single value is adopted, please use $c_{u,k} = 210$ kPa and $E_{u,k} = 170$ MPa constant with depth)

Characteristic drained strength $\varphi_k = 30^\circ$ and $c'_k = 25$ kPa (constant with depth)

Characteristic drained Young's modulus $E_{s,k} = 50$ MPa (constant with depth)

Assume the limiting value of settlement is 25 mm and of tilt is 1/500.

The width of the foundation when designed to Eurocode 7 is to be determined, assuming the foundation is for a conventional concrete framed structure. There is no need to consider any effects due to frost or vegetation. The foundations' design working life is 50 years.